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Research Roadmap

Transient
Optimization

Active Flow
Control

Multiscale and 
Multifidelity Methods

Turbulence
Simulation 
(LES/DES)

Discontinuous
Galerkin

Discontinuous Galerkin is an enabling algorithmic technology. . .
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Contributions and Collaborations

Contributions

• ASC Spatial Discretization

– Discontinuous Galerkin (DG)

– Multiscale algorithms

– Re-entry vehicles . . .

• ASC Optimization

– DG + Optimization (DG-OPT)

– Multiscale & multifidelity

for optimization

– Spin-up . . .

• LDRD Homeland Security

– DG-OPT

– Transient optimal control

– Bio/Chem remediation . . .

Collaborations

9211 Ross Bartlett, Mike Eldred,
Bart van Bloemen Waanders

9214 Pavel Bochev, Rich Lehoucq

9231 Mark Christon

9233 John Shadid

9235 Alex Slepoy

9115 Matt Barone, David Kuntz

8752 Greg Wagner

Rice Gouquan Chen (PhD student),

Matthias Heinkenschloss,

Srinivas Ramakrishnan (PhD student)
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Transient PDE Constrained Optimization

• Transient optimization and control problems are increasingly important:

– Steady-state solutions do not capture critical physics:
aeroacoustics, combustion instabilities, bluff-body wakes, . . .

– Next generation systems will use active design/control techniques.

• Algorithmic Challenges:

– Complex geometries
– Unsteady flow physics
– Localized, broadband physics
– Gradient evaluation
– Storage of time-history
– Complex problem setup
– Large-scale space-time problems
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Transient PDE Constrained Optimization

• Transient optimization and control problems are increasingly important:

– Steady-state solutions do not capture critical physics:
aeroacoustics, combustion instabilities, bluff-body wakes, . . .

– Next generation systems will use active design/control techniques.

• Algorithmic Challenges:

– Complex geometries
– Unsteady flow physics
– Localized, broadband physics
– Gradient evaluation
– Storage of time-history
– Complex problem setup
– Large-scale space-time problems

• DG-OPT

– unstructured meshes.
– high accuracy, low-dissipation.
– multiscale / zonal models.
– adjoint methods.
– efficient I/O, checkpointing.
– object-oriented software design.
– parallel algorithms.
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Discontinuous Galerkin Method

Strong form:

U ,t + Fi,i − Fv
i,i = S, in �

U(x, 0) = U0(x), at t = 0

and appropriate boundary conditions on ∂�.
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Introduce numerical fluxes Fn(U) → F̂n(U−,U+) and sum over all elements
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Benefits: High accuracy, unstructured, local hp-refinement, local conservation, . . .
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Status of DGM Prototype Code

• Arbitrarily high-order discontinuous Galerkin spatial discretization,

• Explicit RK methods, implicit Trilinos implementation underway. . .

• LES-VMS approach for element-by-element subgrid-scale modeling

• Supports multifidelity and multiscale models

• Already validated for turbulent channel flow, bluff body wakes underway . . .

with Srinivas Ramakrishnan (Rice)
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with Matt Barone (9115)
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DG + Optimization: DG-OPT

Adjoint-based Gradient Method

• Continuous adjoint formulation in space:

– Adjoint PDEs are discretized using DG, similar to State equations.
– Allows for accurate, stable, discretizations of both state and adjoint.
– Enables different resolutions to be used for state and adjoint.
– Obviates difficulties with non differentiable numerical fluxes and limiters

– Provides insight into the physics of sensitivity systems and boundary conditions.

• Discrete adjoint in time: Runge-Kutta, Backward Euler, Crank-Nicholson

• Adjoint implemented for: Advection-Diffusion, Burgers, Wave, Euler, and
Navier-Stokes

• Future work will take advantage of Sandia’s DAKOTA and MOOCHO
optimization tools. . .

• Time-domain decomposition techniques are in progress
(Bartlet, Collis, Heinkenschloss, van Bloemen Waanders, 2004). . .

• Generic solver/optimization interface mimics mathematical formulation . . .
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DG-OPT Framework Design

Obs

penalty

cost
end_condition

Ctrl

penalty

inner_product
norm
cost
gradient
set_direction

ObjFunc

initialize
evaluate
gradient

Control

list<Ctrl*>
npredict
inner_product
norm
cost
gradient

Objective

list<Obs*>
npredict
cost
terminal_cost
end_condition

Source

apply

BC

apply

State

database

compute
test
advance

Adjoint

compute

Optimizer

optimize
advance
check_grad

OptProblem

solve

......

... ...
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Preliminary Performance & Porting

• Demonstrated scaling of flow solver up to 80 processors, even on modestly sized

two-dimensional problems (≈ 10, 000 elements).

• Scaling of optimization problems same as flow solver, so far. . .

(Note that optimization problem is small — only 576 elements!)

Sp
ee
du
p

CPU’s

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Ideal
State

Parallel speedup of DGM Solver.

Sp
ee
du
p

CPU’s

5

10

15
Ideal
State
Optimization

5 10 15

Parallel speedup of DGM Optimization.

• Ported to many Sandia/DOE platforms:

Cplant, QT, RedStorm prototypes, Rogue/Renegade, Liberty/Shasta
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Example: Cylinder Wake Control

min
g∈G

J (g)

where

J (g) = 1

2

∫
�o

∫ T

0

∣∣u − û∣∣2 d�dt

+ α

2

∫
�w

∫ T

0
g2d�dt

such that

N (u, g) = 0 (Navier–Stokes)

Cylinder

u• g = vn

• Re = 100, M∞ = 0.5.
• DG: Ne = 576 quads with p = 4

• RK4: Nt = 2, 000, �t = 0.0015.
• Consider both unsteady and steady

suction/blowing.
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Multimodel & Multifidelity Optimization
Bell AH-1 Blade-Vortex Interaction

• Conditions: Re = 100, M∞ = 0.3

• Vortex: location (x0, y0) = (−6, 1/4),
core radius Rc = 0.15,

maximum velocity vθmax = 1/2.
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Scattered Pressure:
Navier–Stokes
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Optimization results for multimodel/multifidelity models have been obtained!
(95% reduction in acoustic energy!)
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Multiscale Methods

• Many Sandia applications exhibit nonlinear multiscale behavior:

– strong-shock Z-pinch physics,

– turbulent reacting flows in pool fires,

– turbulent flows for reentry vehicles,

– failure of metallic microcomponents in weapons systems, . . .

• Two primary classes of multiscale applications:

1. Same continuum model holds at all scales→ computational resources.

2. Atomistic/molecular simulations required for small scales→ requires coupling to

continuum level.

• Organized interdisciplinary research team:
Pavel Bochev (9214), Mark Christon (9231), Scott Collis (9211), Rich Lehoucq (9214),

Alex Slepoy (9235), John Shadid (9233), and Greg Wagner (8752)

• Forming external collaborations:
Tom Hughes (UT-Austin), Donald Estep (Colorado State), Max Gunzburger (Florida State)

• Application areas:
fluid dynamics, shock hydrodynamics, solid mechanics, and materials science.
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General Multiscale Mathematical Framework

• Basic foundation: Variational Multiscale (VMS) Method (Hughes et al., 2000)

• Identified common issues in multiscale applications:

– Scale representation,

– Scale separation,

– Interscale communication.

∗ Coupling of different models and physics at different scales,
∗ Subgrid scale models,
∗ Creation/destruction of information at interfaces. . .

Key Idea: Combine VMS with DG→ local VMS (�VMS)

– Use VMS formulation within spatial regions,
– Generalize the idea of numerical fluxes to interscale transfer operators,
– Use weak coupling of interscale transfer operators over space-time interfaces
– Within space-time regions, subgrid-scale modeling via VMS

• LDRD idea accepted for full proposal. . .

• MICS-DOE Multiscale whitepaper in progress. . .
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Example: �VMS for Turbulent Channel Flow

• Fully developed turbulent channel flow: Reτ = 395,M = 0.3

• Variable p-refinement near walls: p = 6, 6, 5, 4, 4, 5, 6, 6

• VMS modeling on small scales with 50/50 partition, variable small-scale space.

• �VMS rovides extensive flexibility (variable resolution and models)

• Note excellent agreement with DNS, especially in near-wall region.
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Internal Impact: 2003–2004

• Submitted MICS proposal:

Multiscale Modeling and Simulation (with Mark Christon)

• Submitted 4 LDRD ideas:

– Mathematical Framework for Multiscale Science and Engineering: The

Variational Multiscale Method and Interscale Transfer Operators

(with Pavel Bochev, Mark Christon, John Shadid, Alex Slepoy, and Greg Wagner.)

– Multiresolution Limiters for High-Order Methods (with Mark Christon)

– Adjoints of Adjoints for Optimal and Robust Sensor System Design

– Adjoint Methods for Receptivity Prediction in High-Speed Flows

(with David Kuntz)

• Working toward incorporating DG technology into Sandia simulation tools:

Premo (SIERRA), Charon (NEVADA).

• Recruited summer student: Lucas Wilcox (Brown University) to work on adjoint

based error estimation.
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External Impact: 2003–2004

• University collaborations: TJR Hughes (UT-Austin), M Heinkenschloss (Rice), G Chen

(Rice), S Ramakrishnan (Rice)

• Publications/Presentations:

– 5 journal articles (2 published, 1 accepted, 2 in-review),
– 4 conference papers (1 invited),
– 2 abstracts,
– 3 conference presentations (1 invited).

• Reviewer:
Journal of Fluid Mechanics (1), Physics of Fluids (2), Computer Methods in Applied

Mechanics and Engineering (1), AIAA Journal (1), Encyclopedia of Computational

Mechanics (1), Journal of Turbulence (1)

• Technical societies:

– AIAA Working Group: Algorithms and Architectures for Active Flow Control

– AIAA Aeroacoustics Technical Committee
– Session Chair: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Aeroacoustics:
Modeling and Mechanisms

– Forum Organizer: 4th ASME/JSEM Joint Fluids Engineering Conference
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Closing Comments and Future Directions

• DG-OPT Simulation framework is operational for transient, multimodel,

multiscale optimization problems.

• Emphasis this year on spatial discretization, multimodel capability, and

optimization framework.

• Future work will apply DG-OPT to key Sandia applications:

– ASC→ optimal control/design applied to jet-in-crossflow.

– DHS→ optimal control/design of HVAC systems for bio/chem remediation.

• Important near-term goal: Trilinos (Epetra/NOX) for implicit time advancement.

• Key areas for further research:

– Link multiscale formulation with ROM for use in optimization,

– Multimodel and multifidelty methods for optimization,

– Move DG-OPT technology to ASC frameworks.
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Extra Slides
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Eigensolutions

R=300 R=600

Regular pressure Adjoint pressure

R=300 R=600

Blasius boundary layer, F=150

• Adjoint grows upstream
• Adjoint is localized near the wall, with higher spatial gradients
• Adjoint wavelength is approximately the same as the 

Tollmien-Schlichting wavelength
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Numerical Dissipation: Inclined Ellipse

AR = 6,M∞ = 0.2, α = 6◦

• Test case originally proposed and studied by T. Pulliam (1990).

• Solution with zero-circulation initial condition should remain non-lifting.

• Numerical dissipation generates vorticity which leads to lift.
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• High-order DG solution is nearly symmetric (i.e. non-lifting).
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Numerical Dissipation: Vortex Propagation

• Conditions: inviscid, M∞ = 0.3 mean flow.

• Vortex core diameter Dc = 1.0, maximum velocity vθmax = 0.5.

• 5× 5 element array, p = 5 elements, periodic boundaries.
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• Negligible error to graphical accuracy.

• Analysis of Hu et al. (1999) verifies low dissipation and dispersion of DG methods.
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